
CS 537 Notes, Section #7: Semaphore

Example: Readers and Writers

Semaphore usage generally falls into two classes:

1. Uniform resource usage, simple first-in-first-out scheduling: use semaphores for

everything. This is usually the case. Use one semaphore for each constraint in the

system.

2. More complex patterns of resource usage: interaction between different users of a

resource, or changing priorities: semaphores cannot capture the scheduling all by

themselves. Must use state variables to record information about priorites, resource

state. In this case, semaphores get used for two things:

o One semaphore for mutual exclusion on the state variables.

o One semaphore for each class of waiting; used just as a convenience to make a

process wait. In the worst case, one semaphore per process.

Whenever possible, cast problems into the first class. This usually can be done.

Unfortunately, sometimes a resource is shared by different classes of users; that is,

they use the resource in different ways. Potentially the different kinds of usage

interact. For example, consider a shared database with readers and writers. It is safe

for any number of readers to access the database simultaneously, but each writer must

have exclusive access. Example: checking account (statement-generators are readers,

tellers are writers).

o Note that writers are actually readers too.

o In this case, the constraints are too complicated to be solved single-handedly

with semaphores.

o Constraints:

 Readers can only proceed if there are no active or waiting writers (use

semaphore OKToRead).

 Writers can only proceed if there are no active readers or writers (use

semaphore OKToWrite).

 Only one process may manipulate internal state variables at once (use

semaphore Lock).

o Scheduling: writers get preference.

o State variables:

 AR = number of active readers.

 WR = number of waiting readers.

 AW = number of active writers.

 WW = number of waiting writers.

AW is always 0 or 1. AR and AW may not both be non-zero.

o Initialization:
 semaphore OKToRead = new semaphore(0);

 semaphore OKToWrite = new semaphore(0);
 semaphore Lock = new semaphore(1);
 int AR = 0, WR = 0, AW = 0, WW = 0;

Reader Process: Writer Process:

 StartRead ()

 {

 Lock.P();

 if ((AW+WW) == 0) {

 OKToRead.V();

 AR++;

 } else {

 WR++;

 }

 Lock.V();

 OKToRead.P();

}

 StartWrite ()

 {

 Lock.P();

 if ((AW+AR+WW) == 0) {

 OKToWrite.V();

 AW++;

 } else {

 WW++;

 }

 Lock.V();

 OKToWrite.P();

}

EndRead ()

 {

 Lock.P();

 AR--;

 if ((AR == 0) and (WW > 0)) {

 OKToWrite.V();

 AW++;

 WW--;

 }

 Lock.V();

}

 EndWrite ()

 Lock.P();

 AW--;

 if (WW>0) {

 OKToWrite.V();

 AW++;

 WW--;

 } else {

 while (WR>0) {

 OKToRead.V();

 AR++;

 WR--;

 }

 }

 Lock.V();

 }

 main ();

 {

 StartRead();

 // --read the necessary data--

 EndRead();

 }

 main ();

 {

 StartWrite();

 // --write the necessary data--

 EndWrite();

 }

Examples:

o Reader enters and leaves system.

o Writer enters and leaves system.

o Two readers enter system.

o Writer enters system and waits.

o Reader enters system and waits.

o Readers leave system, writer continues.

o Writer leaves system, last reader continues and leaves.

Questions:

o In case of conflict between readers and writers, who gets priority?

o Is the WW necessary in the writer's first if?

o Can OKToRead ever get greater than 1? What about OKToWrite?

o Is the first writer to execute Lock.P() guaranteed to be the first writer to access

the data?

Copyright © 1997, 2002, 2008, 2011 Barton P. Miller

Non-University of Wisconsin students and teachers are welcome to print these notes

their personal use. Further reproduction requires permission of the author.

