CS 537 Notes, Section #7: Semaphore
Example: Readers and Writers

Semaphore usage generally falls into two classes:

1. Uniform resource usage, simple first-in-first-out scheduling: use semaphores for
everything. This is usually the case. Use one semaphore for each constraint in the
system.

2. More complex patterns of resource usage: interaction between different users of a
resource, or changing priorities: semaphores cannot capture the scheduling all by
themselves. Must use state variables to record information about priorites, resource
state. In this case, semaphores get used for two things:

o One semaphore for mutual exclusion on the state variables.
o One semaphore for each class of waiting; used just as a convenience to make a
process wait. In the worst case, one semaphore per process.

Whenever possible, cast problems into the first class. This usually can be done.

Unfortunately, sometimes a resource is shared by different classes of users; that is,
they use the resource in different ways. Potentially the different kinds of usage
interact. For example, consider a shared database with readers and writers. It is safe
for any number of readers to access the database simultaneously, but each writer must
have exclusive access. Example: checking account (statement-generators are readers,
tellers are writers).

Note that writers are actually readers too.
In this case, the constraints are too complicated to be solved single-handedly
with semaphores.
o Constraints:
= Readers can only proceed if there are no active or waiting writers (use
semaphore OKToRead).
= Writers can only proceed if there are no active readers or writers (use
semaphore OKToWrite).
= Only one process may manipulate internal state variables at once (use
semaphore Lock).
Scheduling: writers get preference.
State variables:
= AR = number of active readers.
= WR = number of waiting readers.
= AW = number of active writers.
= WW = number of waiting writers.

AW is always 0 or 1. AR and AW may not both be non-zero.

o Initialization:
. semaphore OKToRead = new semaphore (0);

= semaphore OKToWrite = new semaphore (0);
= semaphore Lock = new semaphore(1l);
* int AR = 0, WR = 0, AW = 0, WW = 0;

Reader Process: Writer Process:
StartRead () StartWrite ()
{ {
Lock.P(); Lock.P();
if ((AW+WW) == 0) { if ((AW+AR+WW) == 0) {
OKToRead.V () ; OKToWrite.V () ;
AR++; AW++;
} else { } else |
WR++; WW++;
} }
Lock.V{(); Lock.V{();
OKToRead.P () ; OKToWrite.P () ;
} }
EndRead () EndWrite ()
{ Lock.P();
Lock.P(); AW--;
AR--; if (Ww>0) {
if ((AR == 0) and (Ww > 0)) { OKToWrite.V () ;
OKToWrite.V () ; AW++;
AW++; WW--—;
WW--; } else {
} while (WR>0) {
Lock.V(); OKToRead.V () ;
} AR++;
WR--7;
}
}
Lock.V();
}
main () main () ;
{ {
StartRead() ; StartWrite () ;
// —-read the necessary data-- // —-write the necessary data--
EndRead () ; EndWrite () ;
} }
Examples:

Reader enters and leaves system.

Writer enters and leaves system.

Two readers enter system.

Writer enters system and waits.

Reader enters system and waits.

Readers leave system, writer continues.

Writer leaves system, last reader continues and leaves.

0O O O O O O O

Multiple Readers

W aiting Writers

| |
| |
I I
| |
| |
I I
| |
: File !
|
|
I : W aiting Readers
| |
I I
| |
| |
I I

One Writer

[|

: : Waiting Writers

|

| |

| |

| |

: File |

: : Waiting Readers

|

| |

| |

-

Questions:

o In case of conflict between readers and writers, who gets priority?
o Isthe WW necessary in the writer's first if?
o Can OKToRead ever get greater than 1? What about OKToWrite?
o Is the first writer to execute Lock.P() guaranteed to be the first writer to access

the data?

Copyright © 1997, 2002, 2008, 2011 Barton P. Miller
Non-University of Wisconsin students and teachers are welcome to print these notes
their personal use. Further reproduction requires permission of the author.

